CHAPTER-9 Working with File Systems

9 FILE SYSTEMS

[image: image1.png]Structure of a Journaled File System
Superblock

Indirect
Blocks

Data Blocks

eSuperblock
~File system size and identification
~Free list, fragment size, nbpi
einodes
»File size, ownership, permissions, times
+Pointers to data blocks
eBlocks
»Data blocks - contain data
»Indirect blocks - contain pointers to data blocks

AIX-journaled file systems are built within logical volumes. Because journaled file systems exist within logical volumes, the size of the file system always multiples of the logical partition size for that logical volume (for example, 4 MB).

An individual file within a file system will by default have units allocated to it in blocks of 4096 bytes. Some AIX commands often report file sizes in units of 512 bytes to remain compatible with other UNIX file systems. This is independent of the actual unit of allocation.

The first addressable logical block on the file system is the superblock. The superblock contains information such as the file system name, size, number of inodes, date/time of creation.

The superblock is critical to the file system and if corrupted, prevents the file system from mounting. For this reason a backup copy of the superblock is always written in block 31.
Immediately following the superblock are inodes which contain identifying

information for files such as the file type,size,permissions,user/group/owner, create/modification and last access dates. They also contain pointers to the data block for fragment addresses which hold the data.

For larger files the system creates sets of indirect blocks filled with data block addresses to point to the data block or fragments which hold the data.
[image: image2.png]Structure of an Inode

® Contents of an inode permissions
no. of links

type of file
user ID
group ID
file size
addresses of blocks
time modified
' time accessed
time changed
access control information
reserved other

inode for file1

e This information can be seen with Is -li:

$Is -li /nome/team01

2132 drwxr-xr-x 2 teamO1staff 512 May?2 14:33 ¢

2136 drwxr-xr-x 2 teamO1staff 512 May 2 14:33 doc
2141 AW - - 1 teamO1staff 28 May 16 10:11 Manuals

Each file is represented by a single inode. The inode contains information about that file such as:

• Ownership

• Access permissions

• Type

• Creation, modification and access times

• Number of links to the file

• Size

• Addresses of data blocks on disk
FILE SYSTEM FRAGMENTATION

Fragmentation provides the way to allocate pieces (or fragments) of a 4KB logical block to files and directories. Fragment support is helpful for small user files and directories.

Fragment size is specified for a file system at the creation time. The allowable fragment size for JFS file systems are 512, 1024, 2048 and 4096 bytes. The fragment size is 4096 bytes.

The JFS fragment support provides a view of the file system as a contiguous series of fragments rather than logical disk blocks. The operational overhead and better utilization of disk space increase as the fragment size for a file system decreases.

In order to maintain the optimum balance between increased overhead and increased usable disk space, the following factors apply to JFS fragment support:

• Disk space allocations of 4096 bytes of fragments are maintained for a file or directory's logical blocks where possible.

• Only partial logical blocks for files and directories less than 32 KB in size can be allocated less than 4096 bytes of fragments.

[image: image3.png]File System Fragmentation

No Fragmentation 4096 bytes

File size = 2000 bytes

This free space cannot
be used by another file.

Fragmentation Enabled 4096 bytes

1024 1024 1p24 1024

File size = 2000 bytes
Fragment size = 1024 bytes

These free fragments can
be used by other files.

[image: image4.png]Variable Number of Inodes

With the default nbpi = 4096 an inode will be created
for every 4096 bytes of file system.

——

File System /\:;Q

(S 4096 | 4006 | 4098 ;

Using the value nbpi = 1024 an inode will be created for
every 1024 bytes of file system.

e

-
File System

e |

! x| !

L A

In all UNIX implementation, when a file system is created, inodes are written to disk. For each file or directory one such data structure is used which describes information pertaining to the file or directory.

JFS also reserves a number of inodes for files and directory in each file system that is created. An inode was generated for every 4 KB of disk space that was allocated to the file system being created. In a 4MB file system this would result in 1024 inodes being generated.

 In JFS file system number of bytes per inode (NBPI) can be specified at the file system creation time. NBPI value of 1024 causes a disk inode to be created for every 1024 bytes of the file system space. A small NBPI value results in a large number of inodes and vice versa.

The decision of fragment size and how many inodes to create for a file system should be based on the projected number of files contained by the file system and their size.

With JFS2 it is no longer necessary to project the number of files contained by the file system and their size. JFS2 dynamically allocates space for inodes as needed, and frees the space when it is no longer required.

ALLOCATION GROUP SIZE:

Allocation Group Size is used to increase the efficiency of the file system. The inodes with the corresponding data blocks are further grouped in logical units of 8, 16, 32, or 64 MB within the file system. Building a relationship between the placement of the data blocks and related inode information reduces the physical action required by the drive heads when I/O operations are performed. The allocation group size value is JFS parameter which along with the NBPI and fragment size determine the overall characteristics of the file system.

The allocation group size (AGS or agsize) value is a JFS configuration parameter which along with the NBPI and fragment size determine the overall characteristics of the file system.

The allowable set of NBPI values are also dependent on the allocation group size (agsize). For example, for an agsize value of 8 MB the only allowable NBPI values are 512, 1024, 2048, 4096, 8192 and 16384 bytes. If you were to double the agsize from 8 MB to 16 MB the range of NBPI values also doubles to 1024, 2048, 4096, 8192, 16384 and 32768 bytes respectively.

Refer to the table for more details.
[image: image5.png]Allocation Group Size

NBPI

8MB

512,1024,2048,4096,8192,16384

16 MB

1024,2048,4096,8192,16384,32768

32MB

2048,4096,8192,16384,32768,65536

64 MB

4096,8192,16384,32768,65536,131072

[image: image6.png]JFS versus JFS2 File Systems

JFS

JFS2

Maximum File Size
Architectural / Tested

64 Gigabytes / 64 Gigabytes

1 Petabyte / 1 Terabyte

Maximum File System Size
Architectural / Tested

1 Terabyte / 1 Terabyte

4 Petabytes / 1 Terabyte

Inode size 128 Bytes 512 Bytes
Number of inodes Fixed, set at creation Dynamic
Directory File Access sequential brree

Journal Log support

External JFSlog only

In-line or External JFS2log

Compression

Yes

No

Quotas

Yes

AIX5.3

Introduction to JFS2

Enhanced Journaled File System (JFS2) is a new file system type in AIX V5.1. It is based on JFS.

1 Petabyte (PB) = 1024 Terabytes (TB) = (250) bytes

1 Terabyte (TB) = 1024 Gigabytes (GB) = (240) bytes

1 Gigabyte (GB) = 1024 Megabytes (MB) = (230) bytes

1 Megabyte (MB) = 1024 Kilobytes (KB) = (220) bytes

1 Kilobyte (KB) = 1024 Bytes = (210) bytes
Extent-based allocation

JFS2 uses extent-based allocation. An extent is an address-length pair, which identifies the starting block address and the length of the extent in blocks. This allows multiple adjacent blocks to be addressed. The advantages of extent-based allocation are high performance and large file size.

Dynamic inodes

The traditional approach of reserving a fixed amount of space for inodes at file system creation time required accurate estimates of the number of files that would reside in the file system. If the estimate was high, disk space was wasted. If the estimate was low, no files could be added until the file system was expanded. JFS2 dynamically allocates space for inodes as needed, and frees the space when it is no longer required.

Directory File b-tree

In JFS the directory files are accessed sequentially. For large directory files this is inefficient. In JFS2, the directories files are accessed via a b-tree index. For very large directories, applications doing large numbers of add and delete to a JFS2 directory can see as much as a 40 fold improvement in performance.

In-line Journal Logs

Normally multiple filesystems use the same journal log. This associated contention can impact performance. Creating a separate journal log for each filesystem takes special planning and requires an excessive amount of disk storage. JFS2 allows the definition of in-line logs where each filesystem has its own log allocated out of the filesystems logical volume.

The space used by the inline log can be as small as 256KB (for a filesystem < 32MB). For details, see the notes on the foil covering the role of a journal log.

JFS2 Disk Quota System

Prior to AIX 5.3 JFS2 did not support a Disk Quota system, though the Berkely Disk Quota System was supported under JFS.

JFS2 quotas may be set for individual users or groups on a per file system basis. The quota system will issue a warning to the user when a particular quota is exceeded, but allow some extra space for current work. Remaining over quota beyond a specified grace period will result in further allocation attempts being denied until the total usage is reduced below the user's or group's quota.

The administration is similar to the BSD Disk Quota (see http://www.openbsd.org for details) except that AIX added a new method for mapping the users to the quotas. The quotas are assigned to a Limits class and then the user are assigned to the class. This greatly simplifies the quota administration. AIX 5.3 has added one new command to

administer “Limits classes” - j2edlimit.
[image: image7.png]Extended Attributes (EA)

e Extensions to regular attributes

® Two versions
—=AIX 5.2 or earlier supported only EAv1
—EAv1 used for local file permission ACLs
=EAv2 improved - more and larger attributes
=JFS2 under AIX 5.3 supports both versions

@ NFS V4 ACLs stored in JFS2 with EAv2

@ User Defined Information may be in EAv2

$ getea HenryVIIl
EAName: Author
EAValue: Shakespeare

Extended attributes are an extension of the normal attributes of a file (such as size and mode). They are (name, value) pairs associated with a file or directory. The name of an attribute is a null-terminated string. The value is arbitrary data of any length.

There are two types of extended attribute: extended attribute version1 (EAv1) and extended attribute version 2 (EAv2). For many year AIX has supported extended attributes for Access Control Lists (ACL), which provide for more granular control of file access. That support was in

EAv1 format. Starting with AIX 5L Version 5.3, EAv2 with JFS2 is now available.

EAv1 had restrictions of only eight attributes, 4 KB per attribute, 16-bit encoded names and no support for user defined attributes. EAv2 effectively eliminates these restrictions.

The primary use for EAv2, currently, is the support for the NFS V4 ACL capability. The discussion of NFS V4 ACLs is outside the scope of this class. AIX V5.3 provides line commands to manage the user defined attributes. To set an attribute value you would use the setea command. To view a user attribute you would use the getea command.
The major concern for the system administrator, regarding EAv2, is the lack of backwards compatibility with earlier versions of AIX. AIX 5L Version 5.3 continues to support EAv1 as the default format, and provides an option to create a file system with EAv2 and a runtime command to convert dynamically from EAv1 to EAv2 to create or access named attributes and advanced ACL. However, once a file system is created with EAv2 or conversion has been initiated, AIX 5L Version 5.2 cannot access the file system and attempting to mount results in an EFORMAT error.
JFS TO JFS2 MIGRATION:
The JFS systems can co-exist on the same system with JFS2 file systems.

To fully utilize the JFS2 features, the following steps will be necessary:

Backup JFS file system data

Create New JFS2 file systems

Restore JFS file system data to the new JFS2 file systems

Note: JFS supports fragmented and compressed file system. The data

 compression saves disk space by about a factor of 2. JFS2 does not

 Support files system compression.

Warning: The root file system must not be compressed. Compression of

 The ‘/usr’ file system is not recommended.

[image: image8.png]Compressed File Systems

compression = LZ (yes)
fragment size = 1024

JFS supports fragmented and compressed file systems. Both types of file systems save disk space by allowing a logical block to be stored on the disk in units or fragments smaller than the full block size of 4096 bytes. In a fragmented file system only the last logical block of files no larger than 32 KB are stored in this manner, so that fragment support is only beneficial for the file systems containing numerous small files. Data compression however, allows all logical blocks of any-sized file to be stored as one or more contiguous fragments.

On average, data compression saves disk space by about a factor of 2. JFS2 does not support file system compression. The use of fragments and data compression does, however, increase the potential for fragmentation of the disk's free space. Fragments allocated to a logical block must be contiguous on the disk. A file system experiencing free space fragmentation may have

difficulty locating enough contiguous fragments for a logical block's allocation, even though the total number of free fragments may exceed the logical block's requirements. JFS and JFS2 alleviate free space fragmentation by providing the defragfs utility which defragments a file system by increasing the amount of contiguous space. This utility can be

used for fragmented and compressed file systems.

Warning: The root file system must not be compressed. Compression of the /usr file system is not recommended.

In addition to increased disk I/O activity and free space fragmentation problems, file systems using data compression have the following performance considerations:

• Degradation in file system usability arising as a direct result of the data

compression/decompression activity. If the time to compress and decompress data is quite lengthy, it may not always be possible to use a compressed file system, particularly in a busy commercial environment where data needs to be available immediately.

• All logical blocks in a compressed file system, when modified for the first time, will be allocated 4096 bytes of disk space, and this space is subsequently reallocated when the logical block is written to disk. Performance costs are, therefore, associated with this allocation, which does not occur in non-compressed file systems.

• In order to perform data compression, approximately 50 CPU cycles per byte are required and about 10 CPU cycles per byte for decompression. Data compression, therefore, places a load on the processor by increasing the number of processor cycles.
[image: image9.png]Large File Enabled File Systems

File =132 MB
(1024 * 4 KB blocks)+ (1024 * 128 KB blocks) =
4 MB + 128 MB =

1025
1026
1027
7055
1056

’—b 1057
1058
1059

7128 KB

132 MB
132 MB

32 Blocks)
128 KB

AIX V4.2 and later JFS supports large file enabled file systems. Only file systems enabled for large files can support files with a size greater than 2 GB. In a file system enabled for large files, the data stored before the 4 MB file offset is allocated in 4096 byte blocks. File data stored beyond the 4 MB file offset is allocated with large disk blocks of 128 KB in size. The large disk blocks are actually 32 contiguous 4096 byte blocks. In the example above, a 132 MB file in a file system enabled for large files has 1024 4 KB disk blocks and 1024 128 KB disk blocks for a total of 2048 blocks.

In a regular standard file system the 132 MB file would require 33 single indirect blocks (each filled with 1024 4 KB disk addresses). However, the large file geometry requires only two single indirect blocks for the 132 MB file.

It is not necessary to use large enabled file systems in JFS2, since large file and file system support is built in by default.
JOURNAL LOG:

The AIX memory maps files currently in use. Any writes to files are done first in memory and at a later stage are written out to disk when the sync system call runs – every minute.

The jfslog (/dev/hd8) is a circular log. It is created the size of one physical partition – one per each volume group. The jfslog ensures file system integrity by writing all metadata information to the jfslog immediately.

 File system metadata consists of changes to the structure itself such as changes to the inodes and the free list. When the data is written out to disk a sync point is indicated in the log and new transactions are written from that point forward.

The Inline log is a new feature to JFS2 file systems that allows you to log directly to the file system. The default inline log size is 0.4% of the logical volume size. The Inline log feature is not available with JFS file system.

[image: image10.png]Journal Log

! Write data :

sync / fsync
1) inode changes to lod
2) COMMIT to log
3) update inode
4) sync log

eNo journaling of data blocks - only journals inode information (and
indirect block information.)

The following table list the default inline log size in AIX 5.2 and later.

[image: image11.png]LVsize

inline log size

<32 MB 256 KB
>32 MB up to 64 MB 512 KB
>64 MB up to 128 MB 1MB
128 MB 2MB
128 MB to 1 GB 1/128th of size
1GBto2GB 8MB
2 GBto 128 GB 1/256th of size
128 GB upto 512 GB 512 MB

512 GB

1/1024th of size

The following table lists the three logging options and which file system type supports them.

[image: image12.png]Option JFS JFS2
Default volume group log Yes Yes
Specific user-created log Yes Yes
Log directly to the file system No Yes

[image: image13.png]File Systems

smit fs
-

File Systems
Move cursor to desired item and press Enter

List All File Systems

List All Mounted File Systems
Add/Change/Show/Delete File Systems
Mount a File System

Mount a Group of File Systems
Unmount a File System

Unmount a Group of File Systems
Verify a File System

Backup a File System

Restore a File System

List Contents of a Backup

Create and backup a snapshot

[image: image14.png]Listing File Systems

Isfs

Name Nodename Mount Pt VFS Size Options Auto
Idevihd4 1 ifs 16384 _ yes
Idevihd1 __ ome ffs2 90112 _ yes
Idevihd2 _ lusr ifs 1277952 _ yes
/devihdOvar __ Nar ifs 8192 _ yes
/devihd3 __ hmp ifs 24576 _ yes
Iproc _ Iproc procfs o yes
/dev/hd10opt __ Jopt ifs _ _ yes
/budget sys4 Ireports nfs bg,hard,intr
/devicd0 __ lcdrom cdrfs __ o no

You can list the various file systems that are defined using the lsfs command. This command will display information from /etc/filesystems and from the logical volumes in a more readable format.

lsfs will also display information about CD-ROM file systems and remote NFS file systems.

lsfs [-q] [-c | -l][-v vfstype | -u mountgrp | file system]

The data may be presented in line and colon (-c) or stanza (-l) format. It is possible to list only the file systems of a particular virtual file system type (-v), or within a particular mount group (-u). The -q option queries the superblock for the fragment size information, compression algorithm, and the number of bytes per inode.

The SMIT fastpath to get to the screen which accomplishes the same task as the lsfs command is smit fs.
[image: image15.png]List All Mounted File Systems

mount

node mounted mountedover fs date options.
/dev/hd4 ! ifs Jul 11 20:14 rw,log=/dev/hd8
Idev/hd2 lusr ifs Jul 11 20:15 rw,log=/dev/hd8
Idev/hd9var Ivar ifs Jul 11 20:15 rw,log=/dev/hd8
Idev/hd3 Itmp ifs Jul 11 20:15 rw,log=/dev/hd8
Idev/hd1 /home jfs2 Jul 11 20:16 rw,log=/dev/loglv00
Iproc Jproc procfs Jul 1120:16 w
Jdev/hd100pt Jopt ifs Jul 11 20:16 rw,log=/dev/hd8

sys4 /budget Ireports nfs Jul 11 20:16 rw,hard,bg,intr
Idev/ramdisk framdisk s Jul 1120:17 rw,nointegrity
Idevlproject Jproject jfs2 Jul 11 20:18 w,log=INLINE
Idev/cd0 ledrom cdrfs Jul 11 20:19 ro

The mount command, when used with no parameters, is used to list all the file systems which are currently mounted within the overall file system structure. File systems must be mounted to be accessed, that is, make the file system available for read or write access from your system.

The mount command when used with a number of parameters, is also used to perform the mount operation.

There are two types of file systems, system-created and user-created. System-created file systems are expected to be there by the system and by many applications. User-created file systems contain user applications and data.

Standard device names include:

• hd4 /

• hd1 /home

• hd2 /usr
• hd3 /tmp

• hd9var /var

• proc /proc

• hd10opt /opt

SMIT can also be used to obtain this information. From SMIT you want to select List all Mounted File Systems under File Systems.
[image: image16.png]Add/Change/Show/Delete File Systems

smit manfs

P

Add / Change / Show / Delete File Systems
Move cursor to desired item and press Enter

Enhanced Journaled File Systems
Joumaled File Systems

CDROM File Systerns

Network File Systems (NFS)

In AIX 5L, when asking to work with a filesystem smit will present a menu which prompts the administrator for the type of filesystem, be it the JFS, Enhanced JFS, CDROM Filesystem or NFS.

The fast path for working with JFS is: smit jfs

The fast path for working with the Enhanced JFS is: smit jfs2
[image: image17.png]Working with
Journaled File Systems in SMIT

Journaled File Systems
Move cursor to desired item and press Enter.
Add a Journaled File System

Change / Show Characteristics of a Journaled File System
Remove a Journaled File System
Defragment a Journaled File System

Add a Journaled File System on a Previously Defined Logical Volume

Move cursor to desired item and press Enter.

Add a Standard Journaled File System
Add a Compressed Journaled File System
Add a Large File Enabled Journaled File System

When choosing to add a JFS file system, there are two options.

• If you choose to Add a Journaled File System, SMIT will use defaults to create the logical volume in which the file system sits.

• If you choose to Add a Journaled File System on a Previously Defined Logical Volume, this assumes that the logical volume has already been created according to your specifications. The size of the file system will be the size of the logical volume.

The diagram shows the SMIT menu displayed if using the smit jfs fastpath.
[image: image18.png]Add a Standard Journaled File System
on a Previously Defined Logical Volume

Add a Standard Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

* LOGICAL VOLUME name
* MOUNT POINT

Mount AUTOMATICALLY at system restart? no

PERMISSIONS readiwrite

Mount OPTIONS

Start Disk Accounting ?

Fragment Size (bytes)

Number of bytes per inode

Allocation Group Size (MBytes)

Logical Volume for Log

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

When a logical volume is created it is simply an empty container waiting to be formatted for use. The journaled file system is the most common way of using it. Thus, adding a file system to a previously created logical volume formats the logical volume for use as a file system.

Adding a file system in this way provides you with the greatest level of control over where the file system will reside on disk.

The SMIT fastpath for this screen is smit crjfslvstd.

AIX V5.3 has added a new line to this panel: Logical Volume for log. Prior to AIX V5.3 you needed to edit /etc/filesystems after creating the file is you wanted to use anything other than the default /dev/hd8 LV for the log. With AIX V5.3, you can identify what log to use in the initial definition. Note that the jfslog itself has to be previously defined and formatted.
[image: image19.png]Add a Standard Journaled File System

Add a Standard Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

Volume group name
SIZE of file system
Unit Size
o Number of units
* MOUNT POINT
Mount AUTOMATICALLY at system restart?
PERMISSIONS
Mount OPTIONS
Start Disk Accounting ?
Fragment Size (bytes)
Number of bytes per inode
Allocation Group Size (MBytes)
Logical Volume for Log

F1=Help F2=Refresh F3=Cancel
F5=Reset F6=Command F7=Edit
F9=Shell F10=Exit Enter=Do

[Entry Fields]
rootvg

Megabytes
[1

1

no
read/write
1

no

4096
4096

8

1

Fa=List
F8=Image

The crfs command is the high-level command to create a file system.

Note: Do not confuse the crfs command with the mkfs command which purely builds the file system structure within a logical volume. crfs does a lot more:

It creates the logical volume if necessary using mklv, it builds the file system structure on that logical volume using mkfs, and then it makes all appropriate changes to the ODM and /etc/filesystems for that logical volume and file system.

There are many parameters which can be set as a JFS file system is being created. The most important of these are given below:

Volume group (-g volgrp); that is, the volume group within which a new logical volume is to be created. The volume group must have sufficient free physical partitions for the new logical volume.

The unitsize (Megabytes | Gigabytes | 512bytes) specifies the selected unit.
The size (-a size=number of units) of unitsize. The size of the file system will be rounded up to the nearest logical partition boundary. This attribute specifies the minimum file system and can't be decreased dynamically after the file system has been successfully created.

The mount point (-m mntpt). The name of a directory within the overall file system on which the new file system will normally be mounted. The mount point must exist before the file system can be mounted and accessed. Under

most circumstances the mount point should be empty.

A file system may be mounted at any other valid directory rather than its normal mount point. In this case, the mount is performed by the administrator, and it is usually for some type of maintenance activity.

Mount automatically at boot time? (-A yes|no). The new file system may be listed to mount automatically when the system boots. This will place the mount=true line in the /etc/filesystems file and will cause the file system to be mounted automatically at its default mount point (above) when the system is restarted. If set to no then mount = false is added to the /etc/filesystems file Permissions (-p rw|ro). A mounted file system may be mounted in read-only (ro) or read-write (rw) mode. This permission setting is used for the file system if it is mounted automatically, or if it is mounted without providing over-riding permissions.

The permissions setting for a mounted file system may not be by-passed regardless of the authority of the user and the permission bits associated with the file or directory on the file system.

Mount options specify security related mount options. Possible values are: nosuid which prevents the execution of setuid and setgid programs and nodev, which prevents open system calls of devices from this mount.

The fragment size (-a fragment=size) specifies the JFS fragment size in bytes. A file system fragment is the smallest unit of disk storage that can be allocated to a file.

This variable must be set to either 512, 1024, 2048 or 4096, the default value being 4096 bytes.

The number of bytes per inode (-a nbpi=value) affects the total number of inodes on the file system. The variable must be either 512, 1024, 2048, 4096, 8192 or 16384, default value being 4096.

The compression attribute (-a compress={no | LZ}) specifies the data compression algorithm LZ, which stands for the IBM version of the compression algorithm Lempel-Ziv. If you do not want data compression, set this attribute value to no, which is the default value.

The allocation group size (-a ag= 8 | 16 | 32 | 64) is a grouping of inodes and disk blocks within the file system. The default agsize is 8 MB. This attribute only applies to AIX V4.2 and later.

[image: image20.png]Working with Enhanced
Journaled File Systems (JFS2) in SMIT

e
Enhanced Journaled File Systems
Move cursor to desired item and press Enter.

Add an Enhanced Journaled File System

Change / Show Characteristics of an Enhanced Journaled File System
Remove an Enhanced Journaled File System

Defragment an Enhanced Journaled File System

List Snapshots for an Enhanced Journaled File System

Create Snapshot for an Enhanced Journaled File System

Mount Snapshot for an Enhanced Journaled File System

Remove Snapshot for an Enhanced Journaled File System

Unmount Snapshot for an Enhanced Journaled File System

Change Snapshot for an Enhanced Journaled File System

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

[image: image21.png]Add an Enhanced Journaled File System (JFS2)
on a Previously Defined Logical Volume

Add an Enhanced Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* LOGICAL VOLUME name +
* MOUNT POINT 8]
Mount AUTOMATICALLY at system restart? no +
PERMISSIONS readwrite +
Mount OPTIONS 1 +
Block Size (bytes) 4096 +
Logical Volume for Log n +
Inline Log size (MBytes) 1 #
Extended Attribute Format Version 1 +
Enable Quota Management no +
Fi=Help F2=Refresh F3=Cancel Fa=List
F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

The SMIT fastpath for this screen is crjfs2lvstd.

The block size parameter refers to the aggregate block size, which is the smallest piece of disk which can be assigned to a file system. It has the same function as the fragment size in JFS.

Logical Volume for Log provides a choice between using either an existing JFS2log logical volume (the first jfs2log for this volume group is the default) or an inline log. If you use the inline log then you have the option to override the default log size.

With AIX 5.2, there are two additional attributes on this panel.

Extended Attribute Format allows to choose between the default EAv1 or EAv2. Enable Quota Management does what it says for this particular filesystem.

One should be sure to plan and build the user quota definitions before enabling disk quotas for a filesystem.
[image: image22.png]Mount a File System

Mount a File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

FILE SYSTEM name
DIRECTORY over which to mount
TYPE of file system
FORCE the mount?
REMOTE NODE containing the file system
to mount
Mount as a REMOVABLE file system?
Mount as a READ-ONLY system?
Disallow DEVICE access via this mount?
Disallow execution of SUID and sgid programs
in this file system?

F1=Help F2=Refresh F3=Cancel
F! F7=Edit
Enter=Do

[Entry Fields]

8]
8]

no

8]

no
no
no
no

Fa=List
F8=Image

+
+
+
+

The files within a file system can only be accessed when the file system is mounted within the overall file system structure. Either an individual file system or a group of file systems can be mounted.

File systems defined with the mount=true or mount=automatic attribute in the /etc/filesystems file will be mounted automatically during system startup.

The syntax of the mount and unmount commands are:

mount [-t Type | Device | Node: Directory]Directory

mount /home/george/myfs

umount|unmount [FileSystem | -t Type]

unmount /home/george/myfs
File systems are usually mounted at startup and are unmounted as part of the shutdown procedure. However, the administrator or members of the security group may issue mount commands at any time, and assuming that the user has write permission to the mount point and read permission on the root directory of the file system to be mounted, the command will be

effective.

Normal users:
can mount a file system provided they belong to the system group and have write access to the mount point

root:

can mount anywhere under any set of permissions

The mount command has many options which may be issued by the user. The default values for these options are set by the system, or are contained within /etc/filesystems.

With the unmount command there are many other options that can be used other than –t Type or file system name.
[image: image23.png]Change/Show
Characteristics of a Journaled File System

Change/Show Characteristics of a Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
File system name Ivar
NEW mount point [var]
SIZE of file system (in 512-byte blocks)
Unit Size 512bytes
Number of units [65536]
Mount GROUP [bootfs]
Mount AUTOMATICALLY at system restart ? yes
PERMISSIONS readiwrite
MOUNT OPTIONS 1
Start Disk Accounting ? no
Fragment Size (bytes) 4096
Number of bytes per inode 4096
Compression algorithm no
Large File Enabled true
Allocation Group Size (MBytes) 16

A Journaled File System may have some of its characteristics changed both while it is in use (mounted) and when it is not in use. To do this, use the chfs command.

Many characteristics may be changed. The most important of these are: The mount point (-m mntpnt). The default mount point may be changed while the file system is in use but the change is only effective when the file system is next mounted.

The unit size can be changed to Megabytes, Gigabytes or 512bytes. The size of a Journaled File System may be increased while it is in use (-a size=number of units). The size of a file system may not be decreased at any time, so it is often better to create a new file system and mount it at an appropriate point within the existing file system than to increase the size if it is suspected that the increased size is only temporarily required.

Increasing the size of the file system extends the logical volume, so the new size will be rounded up to the next logical partition boundary. If you extend the logical volume directly, the partitions are added, but the file system is not changed. Extending the file system will use those added partitions. The mount group of a file system may be changed (-u mntgrp), and the change is effective the next time the new mount group is referenced.
Mount automatically a system restart? Whether a file system is automatically mounted at system startup may be changed (-A yes|no) and the change is effective at the next startup.

The permissions associated with the file system may be changed (-p ro|rw) and the change is effective the next time the file system is mounted.
[image: image24.png]Change/Show Characteristics
of an Enhanced Journaled File System

Change / Show Characteristics of an Enhanced Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
File system name Jhome
NEW mount point ['home]
SIZE of file system
Unit Size 512bytes +
a Number of units [32768] #
Mount GROUP 1§l
Mount AUTOMATICALLY at system restart ? yes +
PERMISSIONS read/write +
MOUNT OPTIONS 1 +
Start Disk Accounting? no +
Block size (bytes) 4096
Inline Log? no
Inline Log size (MBytes) 8]
Extended Attribute Format Version 1 +

Enable Quota Management no +

An Enhanced Journaled File System (JFS2) may have some of its characteristics changed both while it is in use (mounted) and when it is not in use. To do this, use the chfs command.
[image: image25.png]Remove a Journaled File System

Remove a Journaled File System

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
FILE SYSTEM name &
Remove Mount Point no &
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image

F9=Shell F10=Exit Enter=Do

The rmfs command is the high-level command used to remove a file system.

In order to remove a file system, it must be unmounted from the overall file tree, and this cannot be done if the file system is in use, that is, some user or process is using the file system or has it as a current directory.

rmfs removes any information for the file system from the ODM and /etc/filesystems. When the file system is removed, the logical volume on which it resides is also removed. JFS2 file system removal works the same way.

The syntax of the rmfs command is:

rmfs [-r] [-i] FileSystem

-r Removes the mountpoint of the filesystem

-i Displays warning and prompts the user before removing the filesystem

rmfs -r /home/george/myfs
[image: image26.png]Dynamically Shrinking a JFS2 Filesystem

Before: LP1

LP2
1 | | e
1
]]
After: LP1
_ # chfs -a size="-16M" /myfs
0 |

Prior to Version 5.3 there is no way to shrink a file system dynamically while you are using it, although you can easily extend as needed. The procedure to shrink a file system was to create a new smaller version, copy the data, take the old version offline, then delete the old version. In AIX 5L Version 5.3, dynamic file system shrink is now available with Enhanced

Journaled File System (JFS2).

The chfs command (and corresponding smit panel) support for the size attribute has been changed in AIX 5.3 to support either a final size which is smaller than the current size or a decrement (value preceded with the minus sign). The requested difference is translated into a whole number of physical partitions with any remaining amount beyond being ignored. This asking to decrease by 1 MB would have no effect (minimum PPsize for JFS2 is 16 MB).

There must be enough freespace in the remaining Physical Partitions of the filesystem to stored the file data and metadata structures being moved from the freed PPs. If there is an inline log, that log is also proportionally adjusted in size.
[image: image27.png]Add a RAM File System

o Create a RAM disk of 4 MB

mkramdisk 4M

/dev/rramdiskO

e Create a JFS File System on this RAM disk

mkfs: destroy /dev/ramdiskO (yes)? y

e Create Mountpoint

mkdir /ramdisk

* Mount RAM File System
(# mount -V jfs -0 nointegrity /dev/ramdisk0 /ramd\sk)

The purpose of the mkramdisk command is to create file systems directly in memory. This is useful for applications that make many temporary files.

Use ramdisk only for data that can be lost. After each reboot the ramdisk file system is destroyed and must be rebuilt.
[image: image28.png]Add an UDF File System on a DVD-RAM

Create an UDF Filesystem
udfcreate -d /dev/cd0

® Change the label on an UDF File System
udflabel -d /dev/cdO -| testdvd

|

* Create a Mountpoint
mkdir /dvddisk

* Mount an UDF File System
(# mount -V udfs -o rw /dev/cd0 /dvddisk

-/

® Check an UDF File System
udfcheck -d /dev/cd0

Once you have created an UDF on a DVD-RAM, you can just treat it like a normal hard disk. It enables you to read, write, delete, copy, move, mount, unmount and edit a file within the DVD directory.

The Universal Disk Format Specification (UDFS) is based on the Micro Design International (MDI)’s UDF implementation. It supports UDFS 1.50, 2.00, 2.01.

It is now possible to read and write to a DVD media in 32/64bit mode.

The implementation is based on UDFS 2.01, but backward compatible to 2.00 and 1.50.
Note: The ‘crfs’ command is the high level command to create a file

 system. Do not confuse the ‘crfs’ command with the ‘mkfs’ command

 Which purely builds the file system structure within a logical volume.

 The ‘crfs’ does a lot more: It creates the logical volume if necessary

 using mklv, it builds the file system structure on that logical volume

 using ‘mkfs’, and then it makes all appropriate changes to the ODM

 And ‘/etc/filesystems’ for that logical volume and file system.

MANAGING FILE SYSTEMS
[image: image29.png]Control Growing Files

> /varfadm/wtmp

» /var/spool/*/*

» SHOME/smit.log

» SHOME/smit.script

» SHOME/websm.log

» SHOME/websm.script
» [etc/security/failedlogin

» /varfadm/sulog

Growing files should be monitored and cleaned out periodically. These are some of the files that grow.

If accounting is turned on, /var/adm/wtmp is kept to a reasonable size. /var/adm/wtmp, /etc/security/failedlogin and /var/adm/sulog are needed because they contain historical data regarding login activity. Thus, these files should always have a few days worth of login activity kept in them. If accounting is not turned on, to capture the data to archive it, use

who -a on /var/adm/wtmp and /etc/security/failedlogin and redirect the output to a save file. Then the file can be purged by using cat /dev/null redirected to either /var/adm/wtmp or /etc/security/failedlogin. /var/adm/sulog can be edited directly.

/var/spool contains cron entries, the mail, and other items that grow on an ongoing basis, along with printer files. If there is a problem you can try to clear the queueing subsystem by executing the following commands:

1. stopsrc -s qdaemon

2. rm /var/spool/lpd/qdir/*
3. rm /var/spool/lpd/stat/*

4. rm /var/spool/qdaemon/*

5. startsrc -s qdaemon

[image: image30.png]Space Management

« File systems expand upon notice, NOT automatically

To keep from running into problems:
»Monitor file system growth
»Determine causes
» Control growing files
»Manage file system space usage
»Control user disk usage
»Defragment file system

Although AIX provides for dynamic expansion of a file system, it does not expand the file system on the fly. The system administrator must continually monitor the file system growth to expand it before the file system gets full. If the file system becomes 100% full then the users receive out of space messages on file system expansion.

For example, the df command can be run via cron (the job scheduler) to perform a regular check of the space available in the file system and produce a report.

You can use as well the new Resource Monitoring and Control (RMC) subsystem that is based on the Reliable Scalable Cluster Technology (RSCT) on the IBM SP platform. Use the WSM to configure RMC. You will have 84 conditions and 8 responses to predefine. The ctrmc subsystem is started in the /etc/inittab.
[image: image31.png]Listing Free Disk Space

e The df command displays information about total space and
available space on a file system

#df

Filesystem 512-blocks Free %Used lused %lused Mounted on

Idevindd 16384 7600 53% 1243 30% /
Idevind2 1630208 101648 93% 22217 10% Jusr
Idevihdovar 24576 22360 9% 257 8% Ivar
Idevind3 24576 21520 12% 144 3% tmp
Idevid1 24576 5160 79% 518 16% /home
Iproc - - - - - Jproc
Idevhd10opt 65536 48728 26% 374 5% Jopt
Ideviivoo 24576 3172 86% 620 22% Jhome/john

Ideviramdisk0 8192 7848 5% 17 2% Iramdisk

This is an important command to be aware of and use frequently. If you run out of space in a file system (especially / or /tmp), system corruption could occur.

The df command lists the free space on all mounted file systems.

The options -m and -g are only available in AIX V5.2.

df -I

reports space used and free space

df -k

reports free space in 1 KB blocks and I-nodes used

df -m

reports free space in 1 MB blocks and I-nodes used

df -g

reports free space in 1 GB blocks and I-nodes used
[image: image32.png]Listing Disk Usage
@ The du command can be used to list the number of blocks used by
a file or a directory

du /home | sort -r -n

624 /home
392 /home/fred
98 /home/tom
54 /home/mary
52 /home/liz
/home/suzy

/home/guest

/home/steve

@ To view individual file sizes, use the Is -| command

There may be a number of files or users that are causing the increase of use in a particular file system. The du command helps to determine the cause.

du gives information in 512-byte blocks, by directory. Use the -k option to display sizes in 1 KB units, use the -m option to display sizes in 1 MB units, use the -g option to display sizes in 1 GB units. With the -a option, output is displayed by file rather than directory.

If used with sort on the first column in descending order, it can be an aid in determining which files/directories are the largest. Then using an ls -l, you can determine the file/directory's owner.

The options -m and -g are only available in AIX V5.2.

The -x option is also very useful. When using du -ax, the report only shows information from the specified file system. This is the best way to determine what file is filling a particular file system.

The find command is useful to locate files that are over a certain size. For example, to find all files that have greater than 1,000,000 characters and then list them use:

find . -size +1000000c -exec ls -l {} \;

Note: - The disk usage command is being used against a particular file system and piped into the sort command. The sort command sorts on the first field, which is a numeric field as specified by the -n option.

The sort output will also be reversed because of the -r option. The numbers that you see are in terms of 512-byte blocks. Use the -k option to view sizes in 1K blocks.

The point is to identify who the user of file system is and, before expanding the file system, ask the person if they really need that space.
[image: image33.png]skulker

@ The skulker command cleans up file systems by removing
unwanted or obsolete files

» Candidate files include (can use file aging as criteria):
»those in /tmp directory
»a.out file
»core files
»ed.hup files

& skulker is normally invoked daily by the cron command as part of
the root's crontab file

® Modify the skulker shell script to suit local needs for the removal of
files

The following is an example of the types of entries that are in the /usr/sbin/skulker program. To analyze the commands that are executed for each type of entry, print out or view the contents of the /usr/sbin/skulker file. Use care if modifying the file.

Removes all:

• old primary.output that got lost

• old qdir files

• files that are left in the mail queues

• files in /tmp older than 24 hours and not accessed or modified in the past 24 hours

• files in /var/tmp

• news items older than 45 days

• *.bak, *.bak, a.out, core, proof, galley, ed.hup files that are more than one day old

• anything in a .putdir directory more than a day old

skulker is a shell script that is shipped with AIX BOS and performs useful clean ups of the system, removing temporary and junk files.

As a template, it is suited to the operating system at the level on which it was installed. If the operating system has been upgraded or modified, it may be inadvisable to use an old version of skulker.

The skulker shell script is moderately complex. When making modifications, it is advised to make a copy of the shell script first just in case!
[image: image34.png]Fragmentation Considerations

4096 bytes

Without fragmentation 2000 bytes | |

File size = 2000 bytes This free space cannot

be used by another file

4096 bytes
With fragmentation

20 ! !
File size = 2000 bytes 1024 1024 102 | 1028
Fragment size = 1024 bytes These free fragments can

be used by other files

Considerations to be made:
#Disk space allocation
=Disk space utilization

#1/O activity

eFree space fragmentation
eFragment allocation map

In JFS, as many whole fragments as necessary are used to store a file or directory's data. Consider that we have chosen to use a JFS fragment size of 4 KB and we are attempting to store file data which only partially fills a JFS fragment. Potentially, the amount of unused or wasted space in the partially filled fragment can be quite high. For example, if only 500 bytes are stored in this fragment then 3596 bytes will be wasted. However, if a smaller JFS

fragment size, say 512 bytes was used, the amount of wasted disk space would be greatly reduced to only 12 bytes. It is, therefore, better to use small fragment sizes if efficient use of available disk space is required.

Although small fragment sizes can be beneficial in reducing wasted disk space, this can have an adverse effect on disk I/O activity. For a file with a size of 4 KB stored in a single fragment of 4 KB, only one disk I/O operation would be required to either read or write the file. If the choice of the fragment size was 512 bytes, a 4 KB file would only be allocated a 4

KB block if one were available. If a single 4 KB block were not available, 512 byte fragments would be used, with a potential to allocate eight fragments for this file. If fragments are used, for a read or write to complete, several additional disk I/O operations (disk seeks, data transfers and allocation activity) would be required. Therefore, for file systems which use a fragment size of 4 KB, the number of disk I/O operations will be far less than for file systems which employ a smaller fragment size.

For file systems with a fragment size smaller than 4 KB, there is likely to be an increase in allocation activity when the size of existing files or directories are extended.

Free space fragmentation can occur much more within a file system that uses smaller fragment sizes. The fragment allocation map, used to hold information about the state of each fragment for each file system, is held on the disk and in virtual memory.

The use of smaller fragment sizes in file systems results in an increase in the length of these maps and therefore requires more resources to hold.

In JFS2 the block size has a similar function to the JFS fragment size. The default is 4096 and can be altered by the system administrator.
[image: image35.png]Defragmenting a File System

e The defragfs command increases a file system's contiguous free
space

e The file system must be mounted

Options:
-q Reports the current state of the file system
-r Reports the current state of the file system and

the state that would result if the defragfs
command is run without either -q, -r or -s
-s Reports shortly the current state of the file system

Some of the information that is returned with the defragfs command is:

• Number of Fragments Moved: Tells you how many data blocks need to be moved.

• Number of Logical Blocks Moved: Tells how many non-contiguous blocks that are in the system currently and how many that are relocated, if possible.

• Number of Allocation Attempts: This is the required number of calls to the allocation routine to defragment the file system.

• Number of Exact Matches: This is the number of exact matches, based on file sizes, that are in the allocation thus allowing the file to be rewritten contiguously.

Note: Sometimes the estimates provided when running defragfs with the -q or -r options will return different results than what is actually done when running defragfs without any options.
[image: image36.png]Verify a File System

e« Command syntax:

fsck[-p |-y | -n] [-f][file system] .

e Checks Journal Log

e Checks inodes, indirect blocks, data blocks, free lists

» If no file system name is specified, the fsck command will check all
filesystems which have the check=true attribute set in the
letc/filesystems

® Orphan files are placed in the /lost+found directory

A file system can be verified using the fsck (file system check) command.

This check consists of a number of stages, including:

• Check the journal log for errors

• Check the blocks to ensure that each block is either allocated to a single file or is in the free list

• Check file sizes

• Check directory entries

The -p option (preen) is used to check a file system making only minor changes without bothering the user. The command when run under SMIT uses this option.

If fsck encounters errors it reports them to the screen. The -y option (yes) or -n (no) option is used to indicate a yes or no answer to all questions. The yes option is typically used to recover a badly damaged file system. Using the -y option will allow fsck to discard some badly damaged files. Note, however, that mounted file systems are not repaired.
If any files are found that are not allocated to a directory anywhere, then fsck creates an entry for that data in the lost+found directory in the / directory of that file system.

If the lost+found directory for a file system does not exist, it can be created using the AIX command mklost+found.

The fsck command also executes each time the system boots up (from the /etc/rc file).
[image: image37.png]Unit Summary

» The components of an AlX file system are the superblock, inodes,
data blocks and indirect blocks.

* Important issues to consider when creating a journaled file system
are: fragment size, NBPI, allocation group size, compression and
whether it should be large file enabled.

= JFS2 supports large files, large file systems, and improves
performance.

» File systems can be added and removed from the system, and their
characteristics can also be changed, all through SMIT.

 [image: image38.png]» File system management does not just happen on the system. File
systems need to be regularly monitored to ensure that they do not
run out of space.

» To ensure the integrity of file systems, checks have to be carried out
whenever file system corruption is suspected.

PAGE
9-5
